Acta Crystallographica Section E

Structure Reports
 Online
 ISSN 1600-5368

Liang-Zhong Xu,* Kai Li, Chong-Yi Zhu, Guo-Dong Si and Guan-Ping Yu

Institute of Agricultural Chemicals, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: qknhs@163169.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.086$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Fluorophenyl)-2-oxo-1-(1H-1,2,4-triazol-1-yl)ethyl piperidine-1-carbodithiolate

The molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{OS}_{2}$, is built up around a chiral C atom, and exists in a propeller-like arrangement. The structure is stablized by van der Waals interactions.

Comment

As an important type of fungicides, triazole compounds are highly efficient and of low toxicity (Shi et al., 1995; Xu et al., 2002). Triazole nuclei appear frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), penicillins, antibiotics such as micrococcin (James et al., 1966), and many metabolic products of fungi and primitive marine animals. Present studies of triazole derivatives concentrate mainly on compounds with triazole as the only active group, while reports of compounds containing both triazole and piperidine groups in a single molecule are scarce. We have therefore studied the title compound, (I), and present its structure here.

(I)

As shown in Fig. 1, the molecule of (I) is built up around the chiral atom C7, which is connected to a piperidine carbodithiolate, a triazole and a fluorophenyloxo group, in a propeller-like arrangement. The four atoms S1, S2, N1 and C1 $(p 1)$ of the carbodithiolate are planar, as are the triazole and fluorophenyl groups. The dihedral angles between $p 1$ and the triazole and fluorophenyl groups are 66.69 (8) and 81.89 (7) ${ }^{\circ}$, respectively. The dihedral angle between the triazole and fluorophenyl groups is $67.88(4)^{\circ}$.

The bond lengths and angles in the 1,2,4-triazole and phenyl rings are generally normal (Ji et al., 2002; Allen et al., 1987). The bond lengths and angles within the piperidine ring are also in good agreement with the earlier report by Yuan et al. (2004). The $\mathrm{C}-\mathrm{F}$ bond length $[1.357$ (2) \AA] is similiar to that found by Lynch \& McClenaghan (2004) [1.340 (3)1.345 (3) $\AA]$.

There are some weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intramolecular hydrogen bonds (Table 1) (Song et al., 2003). The packing is stabilized by weak van der Waals interactions.

Experimental

The title compound was prepared by the reaction of 2-bromo-1-(4-fluorophenyl)-2-($1 \mathrm{H}-1,2,4$-triazol-1-yl)ethanone $(0.02 \mathrm{~mol}, \quad 5.7 \mathrm{~g})$, piperidine $(0.02 \mathrm{~mol}, 1.7 \mathrm{~g}), \mathrm{CS}_{2}(0.02 \mathrm{~mol}, 1.5 \mathrm{~g})$ and potassium hydroxide ($0.02 \mathrm{~mol}, 1.1 \mathrm{~g}$) in ethanol solution at room temperature. Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from chloroform at room temperature.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{OS}_{2}$
$M_{r}=364.46$
Triclinic, $P \overline{1}$
$a=8.7112(15) \AA \AA$
$b=9.8967(17) \AA \AA$
$c=11.1551(19) \AA$
$\alpha=73.323(2)^{\circ}$
$\beta=88.603(2)^{\circ}$
$\gamma=66.981(2)^{\circ}$
$V=843.7(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.435 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1376 reflections
$\theta=2.5-24.1^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.24 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.910, T_{\text {max }}=0.948$
4609 measured reflections

> 2932 independent reflections
> 2231 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=25.0^{\circ}$
> $h=-9 \rightarrow 10$
> $k=-11 \rightarrow 11$
> $l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0427 P)^{2} \\
&+0.0282 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.086$
$S=1.10$

H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~S} 1$	0.97	2.53	$3.052(3)$	114
C6-H6B $\cdots \mathrm{S} 2$	0.97	2.39	$2.939(2)$	115
C7-H7 S 1	0.98	2.45	$3.108(3)$	124
C12-H12 S 1	0.93	2.81	$3.735(2)$	172

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
James, M. N. G. \& Watson, K. J. (1966). J. Chem. Soc. pp. 1361-1367.
Ji, B. M., Du, C. X., Zhu, Y. \& Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252255.

Lynch, D. E. \& McClenaghan, L. (2004). Acta Cryst. C60, o1-o5.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Shi, Y. N., Lu, Y. C. \& Fang, J. X. (1995). Chem. J. Chin. Univ. 16, 1710-1713.
Song, Q.-B., Li, Y.-Z., Liang, Y.-M. \& Ma, Y.-X. (2003). Acta Cryst. E59, m861m863.
Xu, L. Z., Zhang, S. S., Li, H. J., Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.
Yuan, D., Zhang, M., Pan, Z. \& Ma, P. (2004). Acta Cryst. E60, o1321-o1322.

